BioResources (Feb 2011)
PREPARATION AND CHARACTERIZATION OF PVA COMPOSITES WITH CELLULOSE NANOFIBERS OBTAINED BY ULTRASONICATION
Abstract
Cellulose nanofibers were obtained from microcrystalline cellulose (MCC) by the action of hydrodynamic forces associated with ultrasound. Nanofibers isolated from MCC by applying different ultrasonication conditions were characterized to elucidate their morpho-structural features by field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction, and dynamic light scattering. Several differences were observed regarding the size of the nanofibers obtained in different ultrasonic conditions, but no significant changes in the crystalline structure of cellulose nanofibers were detected. The obtained cellulose fibers were used at low levels (1 to 5 wt.%) as reinforcements in a poly(vinyl alcohol) (PVA) matrix. The mechanical and thermal properties of the PVA/cellulose fibers nanocomposites films were determined. The tensile strength and modulus of the PVA film were significantly improved by the addition of cellulose nanofibers. Slightly higher onset degradation temperatures were obtained for PVA composites in comparison to neat PVA, showing an increase of the thermal stability caused by the addition of cellulose fibers.