Journal of Lipid Research (May 1990)

Platelet-neutrophil interactions. 12S,20- and 5S,12S-dihydroxyeicosapentaenoic acids: two novel neutrophil metabolites from platelet-derived 12S-hydroxyeicosapentaenoic acid.

  • C von Schacky,
  • A J Marcus,
  • L B Safier,
  • H L Ullman,
  • N Islam,
  • M J Broekman,
  • S Fischer

Journal volume & issue
Vol. 31, no. 5
pp. 801 – 810

Abstract

Read online

Dietary marine n-3 polyunsaturated fatty acids have demonstrated an antiinflammatory potential in epidemiologic and intervention studies in humans. Proposed mechanisms, involving only leukocytes, fall short of explaining this potential completely. Enriched by dietary means with eicosapentaenoic acid (EPA), stimulated human platelets release substantial amounts of eicosapentaenoic acid and 12S-hydroxyeicosapentaenoic acid (12S-HEPE) in addition to 12S-hydroxyeicosatetraenoic acid (12S-HETE) derived from arachidonic acid. Human neutrophils metabolize 12S-HETE to 5S,12S-DiHETE when stimulated, whereas unstimulated neutrophils produce 12S,20-DiHETE. This study was undertaken to characterize metabolism of 12S-HEPE in human neutrophils. We demonstrate herein for the first time that 12S-HEPE is metabolized by human neutrophils. In unstimulated neutrophils 20-hydroxylation to 12S,20-DiHEPE occurs, whereas in stimulated neurtrophils 5-lipoxygenation to 5S,12S-DiHEPE takes place. The structures of these metabolites were characterized by their relative retention times on reversed-phase high pressure liquid chromatography, by their UV absorbance spectra, and by gas-liquid chromatography-mass spectrometry. With increasing amounts of 12S-HEPE, stimulated neutrophils produced increasing amounts of 5S,12S-DiHEPE, which is virtually inactive biologically. Concomitantly, production of the potent chemokinetic and chemoattractant arachidonic acid derivative leukotriene B4 decreased. Thus, 12S-HEPE can compete with endogenous arachidonic acid for 5-lipoxygenation in stimulated human neutrophils. 12,20-DiHEPE, LTB5, and 5S,12S-DiHEPE were detectable after coincubating EPA-enriched platelets with unenriched neutrophils, and arachidonic acid-derived 5-lipoxygenase products were decreased. We conclude that 12S-HEPE can participate in platelet-neutrophil interactions in a manner similar to 12S-HETE. By providing competing substrates for neutrophil 5-lipoxygenase, platelets might contribute to the antiinflammatory potential of dietary n-3 fatty acids through platelet-neutrophil interaction.