Journal of Neurodevelopmental Disorders (Apr 2023)

No difference in extra-axial cerebrospinal fluid volumes across neurodevelopmental and psychiatric conditions in later childhood and adolescence

  • Madeline Peterson,
  • Christopher Whetten,
  • Anne M. Clark,
  • Jared A. Nielsen

DOI
https://doi.org/10.1186/s11689-023-09477-x
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background While autism spectrum disorder has been associated with various organizational and developmental aberrations in the brain, an increase in extra-axial cerebrospinal fluid volume has recently garnered attention. A series of studies indicate that an increased volume between the ages of 6 months and 4 years was both predictive of the autism diagnosis and symptom severity regardless of genetic risk for the condition. However, there remains a minimal understanding regarding the specificity of an increased volume of extra-axial cerebrospinal fluid to autism. Methods In the present study, we explored extra-axial cerebrospinal fluid volumes in children and adolescents ages 5–21 years with various neurodevelopmental and psychiatric conditions. We hypothesized that an elevated extra-axial cerebrospinal fluid volume would be found in autism compared with typical development and the other diagnostic group. We tested this hypothesis by employing a cross-sectional dataset of 446 individuals (85 autistic, 60 typically developing, and 301 other diagnosis). An analysis of covariance was used to examine differences in extra-axial cerebrospinal fluid volumes between these groups as well as a group by age interaction in extra-axial cerebrospinal fluid volumes. Results Inconsistent with our hypothesis, we found no group differences in extra-axial cerebrospinal fluid volume in this cohort. However, in replication of previous work, a doubling of extra-axial cerebrospinal fluid volume across adolescence was found. Further investigation into the relationship between extra-axial cerebrospinal fluid volume and cortical thickness suggested that this increase in extra-axial cerebrospinal fluid volume may be driven by a decrease in cortical thickness. Furthermore, an exploratory analysis found no relationship between extra-axial cerebrospinal fluid volume and sleep disturbances. Conclusions These results indicate that an increased volume of extra-axial cerebrospinal fluid may be limited to autistic individuals younger than 5 years. Additionally, extra-axial cerebrospinal fluid volume does not differ between autistic, neurotypical, and other psychiatric conditions after age 4.

Keywords