Neural Regeneration Research (Jan 2015)

Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

  • Pei-xun Zhang,
  • Xiao-rui Jiang,
  • Lei Wang,
  • Fang-min Chen,
  • Lin Xu,
  • Fei Huang

DOI
https://doi.org/10.4103/1673-5374.150717
Journal volume & issue
Vol. 10, no. 1
pp. 119 – 123

Abstract

Read online

Preliminary animal experiments have confirmed that sensory nerve fibers promote osteoblast differentiation, but motor nerve fibers have no promotion effect. Whether sensory neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons (sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green fluorescent protein 3 weeks after osteogenic differentiation in vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the proliferation of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by fluorescence microscopy. The levels of mRNAs for osteogenic differentiation-related factors (including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our findings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which provides a theoretical basis for in vitro experiments aimed at constructing tissue-engineered bone

Keywords