Physics Letters B (Sep 2021)
Cosmological time and the constants of nature
Abstract
We propose that cosmological time is effectively the conjugate of the constants of nature. Different definitions of time arise, with the most relevant related to the constant controlling the dynamics in each epoch. The Hamiltonian constraint then becomes a Schrodinger equation. In the connection representation, it is solved by monochromatic plane waves moving in a space generalizing the Chern-Simons functional. Normalizable superpositions exist and for factorizable coherent states we recover the classical limit and a seamless handover between potentially disparate times. There is also a rich structure of alternative states, including entangled constants, opening up the doors to new phenomenology.