BMC Genomics (Mar 2023)

Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato

  • Jianlei Shi,
  • Deju Shui,
  • Shiwen Su,
  • Zili Xiong,
  • Wenshan Zai

DOI
https://doi.org/10.1186/s12864-023-09237-0
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Tomato (Solanum lycopersicum) is both an important agricultural product and an excellent model system for studying plant-pathogen interactions. It is susceptible to bacterial wilt caused by Ralstonia solanacearum (Rs), and infection can result in severe yield and quality losses. To investigate which genes are involved in the resistance response to this pathogen, we sequenced the transcriptomes of both resistant and susceptible tomato inbred lines before and after Rs inoculation. Results In total, 75.02 Gb of high-quality reads were generated from 12 RNA-seq libraries. A total of 1,312 differentially expressed genes (DEGs) were identified, including 693 up-regulated and 621 down-regulated genes. Additionally, 836 unique DEGs were obtained when comparing two tomato lines, including 27 co-expression hub genes. A total of 1,290 DEGs were functionally annotated using eight databases, most of which were found to be involved in biological pathways such as DNA and chromatin activity, plant-pathogen interaction, plant hormone signal transduction, secondary metabolite biosynthesis, and defense response. Among the core-enriched genes in 12 key pathways related to resistance, 36 genotype-specific DEGs were identified. RT-qPCR integrated analysis revealed that multiple DEGs may play a significant role in tomato response to Rs. In particular, Solyc01g073985.1 (NLR disease resistance protein) and Solyc04g058170.1 (calcium-binding protein) in plant-pathogen interaction are likely to be involved in the resistance. Conclusion We analyzed the transcriptomes of both resistant and susceptible tomato lines during control and inoculated conditions and identified several key genotype-specific hub genes involved in a variety of different biological processes. These findings lay a foundation for better understanding the molecular basis by which resistant tomato lines respond to Rs.

Keywords