Sensors (Nov 2021)

Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry

  • Jing-he Wang,
  • Jafar Tavoosi,
  • Ardashir Mohammadzadeh,
  • Saleh Mobayen,
  • Jihad H. Asad,
  • Wudhichai Assawinchaichote,
  • Mai The Vu,
  • Paweł Skruch

DOI
https://doi.org/10.3390/s21217419
Journal volume & issue
Vol. 21, no. 21
p. 7419

Abstract

Read online

The main contribution of this paper is to develop a new flowmeter fault detection approach based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the faults are detected by comparison of measured end estimated signals. In this scheme, the detecting performance depends on the estimation and modeling performance. The suggested NT3FLS is used because of the existence of a high level of measurement errors and uncertainties in this problem. The designed NT3FLS with uncertain footprint-of-uncertainty (FOU), fuzzy secondary memberships and adaptive non-singleton fuzzification results in a powerful tool for modeling signals immersed in noise and error. The level of non-singleton fuzzification and membership parameters are tuned by maximum correntropy (MC) unscented Kalman filter (KF), and the rule parameters are learned by correntropy KF (CKF) with fuzzy kernel size. The suggested learning algorithms can handle the non-Gaussian noises that are common in industrial applications. The various types of flowmeters are investigated, and the effect of common faults are examined. It is shown that the suggested approach can detect the various faults with good accuracy in comparison with conventional approaches.

Keywords