Journal of Chemistry (Jan 2021)

A Study on Synthesis and Characterization of Dy-Doped La0.6Sr0.4Co0.2Fe0.8O3−δ via the Coprecipitation Method

  • Negin Mohammadi,
  • Zahra Khakpour,
  • Amir Maghsoudipour,
  • Aida Faeghinia

DOI
https://doi.org/10.1155/2021/5577465
Journal volume & issue
Vol. 2021

Abstract

Read online

The perovskite Lanthanum Strontium Cobalt Ferrite (LSCF) is investigated as the cathode material used in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In the present study, La0.6−xDyxSr0.4Co0.2Fe0.8O3−δ (x = 0, 0.3, 0.6) was synthesized through the coprecipitation method. The obtained precipitate was calcined at 500, 700, 900, and 1000°С. Phase characterization of the synthesized LSCF and LDySCF powder before and after heat treatment at 700°С was carried out by X-ray diffraction (XRD) analysis. XRD patterns revealed that the perovskite phase was obtained at 700°С in all calcined samples. Chemical bond study to investigate the synthesis process was conducted using the Fourier transform infrared spectroscopy technique. Thermal analysis of DTA and TG has been utilized to investigate how the calcination temperature affects the perovskite phase formation. According to the STA results, the perovskite phase formation started at 551°С and completed at 700°С. The density values of synthesized powders were 6.10, 6.11, and 6.37 g·cm−3for the undoped and doped samples calcined at 700°С. Powder morphology was studied by field emission scanning electron microscopy (FE-SEM). The micrographs showed the spherical-shaped particles with the average particle size of 24–131 nm.