Journal of Materiomics (Mar 2016)

Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping

  • Xiaopeng Lu,
  • Jiwen Xu,
  • Ling Yang,
  • Changrong Zhou,
  • YangYang Zhao,
  • Changlai Yuan,
  • Qingning Li,
  • Guohua Chen,
  • Hua Wang

DOI
https://doi.org/10.1016/j.jmat.2016.02.001
Journal volume & issue
Vol. 2, no. 1
pp. 87 – 93

Abstract

Read online

Lead-free [(Bi0.5Na0.5)0.93Ba0.07]1-xLaxTi1-yZryO3 (BNBLTZ) ceramics were investigated for energy storage applications. In order to adjust its energy storage properties, the La and Zr co-doping contents varied at 0.01 ≤ x, y ≤ 0.04. BNBLTZ ceramics show a single phase perovskite structure without phase transition after La and Zr co-doping. The compact and uniform microstructure with similar grain morphology and different grain sizes is obtained. The remnant polarization and coercive field decrease with the increase of La and Zr additions, and the energy storage density increases drastically. The maximum energy storage density of 1.21 J/cm3 is obtained when x = 0.04 and y = 0.01. There are two dielectric anomalies at Tp and Tm due to the phase transformation. The results suggest that lead-free BNBLTZ ceramics should be good candidates for energy storage applications.

Keywords