Energies (Feb 2024)

Modeling and Control of a Modular Multilevel Converter Based on a Battery Energy Storage System with Soft Arm State-of-Charge Balancing Control

  • Yang Wang,
  • Sajib Chakraborty,
  • Thomas Geury,
  • Omar Hegazy

DOI
https://doi.org/10.3390/en17030740
Journal volume & issue
Vol. 17, no. 3
p. 740

Abstract

Read online

Modular multilevel converters (MMCs) with integrated battery energy storage systems (BESSs) are becoming crucial for modern power grids. This paper investigates the modeling and control of a grid-connected MMC-BESS, with a specific emphasis on state-of-charge (SoC) balancing. Compared to conventional hard arm SoC balancing control (HASBC), this paper proposes an alternative soft arm SoC balancing control (SASBC). The simulation results and analysis indicate the following: 1. SASBC provides superior performance in achieving SoC balance both between and within the arms, as compared to HASBC. 2. The MMC-BESS power fluctuates between phases, arms, and individual submodules to balance the SoC of batteries. After the accomplishment of SoC equalization, the power is equally distributed, and the circulating current is well eliminated. 3. MMC-BESS can operate in both the charging and discharging modes, and the total harmonic distortion (THD) of the output current is reduced from 6.80% to 1.13% after SoC balancing is achieved. 4. A robustness test shows the control system’s effective performance in handling component variations.

Keywords