Journal of High Energy Physics (Apr 2019)

Reconstructing parton distribution functions from Ioffe time data: from Bayesian methods to neural networks

  • Joseph Karpie,
  • Kostas Orginos,
  • Alexander Rothkopf,
  • Savvas Zafeiropoulos

DOI
https://doi.org/10.1007/JHEP04(2019)057
Journal volume & issue
Vol. 2019, no. 4
pp. 1 – 43

Abstract

Read online

Abstract The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem in high energy nuclear physics. In this study, we present and evaluate the efficiency of several numerical methods, well established in the study of inverse problems, to reconstruct the full x-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time simulations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.

Keywords