BMC Infectious Diseases (Aug 2024)

Modeling tuberculosis transmission flow in China, 2010–2012

  • Li Wang,
  • Chengdong Xu,
  • Maogui Hu,
  • Jinfeng Wang,
  • Jiajun Qiao,
  • Wei Chen,
  • Qiankun Zhu,
  • Zhipeng Wang

DOI
https://doi.org/10.1186/s12879-024-09649-7
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background China has the third largest number of TB cases in the world, and the average annual floating population in China is more than 200 million, the increasing floating population across regions has a tremendous potential for spreading infectious diseases, however, the role of increasing massive floating population in tuberculosis transmission is yet unclear in China. Methods 29,667 tuberculosis flow data were derived from the new smear-positive pulmonary tuberculosis cases in China. Spatial variation of TB transmission was measured by geodetector q-statistic and spatial interaction model was used to model the tuberculosis flow and the regional socioeconomic factors. Results Tuberculosis transmission flow presented spatial heterogeneity. The Pearl River Delta in southern China and the Yangtze River Delta along China’s east coast presented as the largest destination and concentration areas of tuberculosis inflows. Socioeconomic factors were determinants of tuberculosis flow. Some impact factors showed different spatial associations with tuberculosis transmission flow. A 10% increase in per capita GDP was associated with 10.2% in 2010 or 2.1% in 2012 decrease in tuberculosis outflows from the provinces of origin, and 1.2% in 2010 or 0.5% increase in tuberculosis inflows to the destinations and 18.9% increase in intraprovincial flow in 2012. Per capita net income of rural households and per capita disposable income of urban households were positively associated with tuberculosis flows. A 10% increase in per capita net income corresponded to 14.0% in 2010 or 3.6% in 2012 increase in outflows from the origin, 44.2% in 2010 or 12.8% increase in inflows to the destinations and 47.9% increase in intraprovincial flows in 2012. Tuberculosis incidence had positive impacts on tuberculosis flows. A 10% increase in the number of tuberculosis cases corresponded to 2.2% in 2010 or 1.1% in 2012 increase in tuberculosis inflows to the destinations, 5.2% in 2010 or 2.0% in 2012 increase in outflows from the origins, 11.5% in 2010 or 2.2% in 2012 increase in intraprovincial flows. Conclusions Tuberculosis flows had clear spatial stratified heterogeneity and spatial autocorrelation, regional socio-economic characteristics had diverse and statistically significant effects on tuberculosis flows in the origin and destination, and income factor played an important role among the determinants.

Keywords