npj Computational Materials (May 2023)
Accelerating material design with the generative toolkit for scientific discovery
- Matteo Manica,
- Jannis Born,
- Joris Cadow,
- Dimitrios Christofidellis,
- Ashish Dave,
- Dean Clarke,
- Yves Gaetan Nana Teukam,
- Giorgio Giannone,
- Samuel C. Hoffman,
- Matthew Buchan,
- Vijil Chenthamarakshan,
- Timothy Donovan,
- Hsiang Han Hsu,
- Federico Zipoli,
- Oliver Schilter,
- Akihiro Kishimoto,
- Lisa Hamada,
- Inkit Padhi,
- Karl Wehden,
- Lauren McHugh,
- Alexy Khrabrov,
- Payel Das,
- Seiji Takeda,
- John R. Smith
Affiliations
- Matteo Manica
- IBM Research Europe - Zurich
- Jannis Born
- IBM Research Europe - Zurich
- Joris Cadow
- IBM Research Europe - Zurich
- Dimitrios Christofidellis
- IBM Research Europe - Zurich
- Ashish Dave
- IBM Research - UK
- Dean Clarke
- IBM Research - UK
- Yves Gaetan Nana Teukam
- IBM Research Europe - Zurich
- Giorgio Giannone
- IBM Research Europe - Zurich
- Samuel C. Hoffman
- IBM Research - Yorktown Heights
- Matthew Buchan
- IBM Research - UK
- Vijil Chenthamarakshan
- IBM Research - Yorktown Heights
- Timothy Donovan
- IBM Research - UK
- Hsiang Han Hsu
- IBM Research - Tokyo
- Federico Zipoli
- IBM Research Europe - Zurich
- Oliver Schilter
- IBM Research Europe - Zurich
- Akihiro Kishimoto
- IBM Research - Tokyo
- Lisa Hamada
- IBM Research - Tokyo
- Inkit Padhi
- IBM Research - Yorktown Heights
- Karl Wehden
- IBM Research - Yorktown Heights
- Lauren McHugh
- IBM Research - Yorktown Heights
- Alexy Khrabrov
- IBM Research - Almaden
- Payel Das
- IBM Research - Yorktown Heights
- Seiji Takeda
- IBM Research - Tokyo
- John R. Smith
- IBM Research - Yorktown Heights
- DOI
- https://doi.org/10.1038/s41524-023-01028-1
- Journal volume & issue
-
Vol. 9,
no. 1
pp. 1 – 6
Abstract
Abstract With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hypotheses with the potential to impact material discovery broadly. We present the Generative Toolkit for Scientific Discovery (GT4SD). This extensible open-source library enables scientists, developers, and researchers to train and use state-of-the-art generative models to accelerate scientific discovery focused on organic material design.