PeerJ (Jun 2024)

Using feces to indicate plastic pollution in terrestrial vertebrate species in western Thailand

  • Jiraporn Teampanpong,
  • Prateep Duengkae

DOI
https://doi.org/10.7717/peerj.17596
Journal volume & issue
Vol. 12
p. e17596

Abstract

Read online Read online

Plastic pollution is a widespread and growing concern due to its transformation into microplastics (MPs), which can harm organisms and ecosystems. This study, aimed to identify plastic pollution in the feces of terrestrial vertebrates using convenience sampling both inside and outside protected areas in Western Thailand. We hypothesized that MPs are likely to be detectable in the feces of all vertebrate species, primarily in the form of small black fragments. We predicted varying quantities of MPs in the feces of the same species across different protected areas. Furthermore, we expected that factors indicating human presence, landscape characteristics, scat weight, and the MP abundance in water, soils, and sediments would influence the presence of plastics in feces. Among 12 terrestrial species studied, potential MPs were found in 41.11% of 90 samples, totaling 83 pieces across eight species including the Asian elephant (Elephas maximus), Eld’s deer (Rucervus eldii), Dhole (Cuon alpinus), Gaur (Bos gaurus), Sambar deer (Rusa unicolor), Wild boar (Sus scrofa), Northern red muntjac (Muntiacus vaginalis), and Butterfly lizard (Leiolepis belliana). Specifically, 3.61% of all potential MPs (three pieces) were macroplastics, and the remaining 96.39% were considered potential MPs with the abundance of 0.92 ± 1.89 items.scat−1 or 8.69 ± 32.56 items.100 g−1 dw. There was an association between the numbers of feces with and without potential plastics and species (χ2 = 20.88, p = 0.012). Most potential plastics were fibers (95.18%), predominantly black (56.63%) or blue (26.51%), with 74.70% smaller than two millimeters. Although there were no significant associations between species and plastic morphologies, colors, and sizes, the abundance classified by these characteristics varied significantly. FTIR identified 52.38% as natural fibers, 38.10% as synthetic fibers (rayon, polyurethane (PUR), polyethylene terephthalate (PET), polypropylene (PP), and PUR blended with cotton), and 9.52% as fragments of PET and Polyvinyl Chloride (PVC). Human-related factors were linked to the occurrence of potential plastics found in the feces of land-dwelling wildlife. This study enhances the understanding of plastic pollution in tropical protected areas, revealing the widespread of MPs even in small numbers from the areas distant from human settlements. Monitoring plastics in feces offers a non-invasive method for assessing plastic pollution in threatened species, as it allows for easy collection and taxonomic identification without harming live animals. However, stringent measures to assure the quality are necessitated to prevent exogenous MP contamination. These findings underscore the importance of raising awareness about plastic pollution in terrestrial ecosystems, especially regarding plastic products from clothing and plastic materials used in agriculture and irrigation systems.

Keywords