Energy Exploration & Exploitation (Jul 2018)
Mineral compositional controls on the porosity of black shales from the Wufeng and Longmaxi Formations (Southern Sichuan Basin and its surroundings) and insights into shale diagenesis
Abstract
The effects of brittle minerals in shale diagenesis on shale pores remain controversial and it is difficult to quantify directly. However, the relationship between brittle minerals and shale pores could provide indirect guidance regarding diagenesis processes in post-mature marine shales. In this study, the pore size distribution was determined, and the relationship between pore volume and shale composition was examined in shale samples with different total organic carbon contents from the Wufeng and Longmaxi Formations, with the objective of distinguishing pore size ranges in organic matter and inorganic minerals, respectively, and studying shale diagenesis. The samples of the Wufeng and Longmaxi shales are composed of clay minerals, calcite, dolomite, quartz, feldspar, and some minor components. The pore size distributions, which were determined using nitrogen adsorption isotherm analysis of shale and kerogen, show similar trends for pore sizes less than approx. 6.5 nm but different trends for larger pore sizes. Mercury injection saturation shows that macropores account for 14.4–22% of the total pore volume. Based on a series of crossplots describing the relationships between shale composition and pore volume or porosity associated with different pore sizes as well as on scanning electron microscopy observations, organic matter pores were found to comprise most of the micro-mesopores (pore diameters < 6.5 nm). Organic matter pores and intraparticle pores associated with carbonate constitute the majority of mesopores (pore diameters 6.5–50 nm). Finally, interparticle pores associated with quartz comprise the majority of the macropores. The mesopores associated with carbonate were formed by dissolution during diagenesis, whereas the macropores associated with quartz are the remainders of the original interparticle pores. Mesopore volumes increase with increasing carbonate content while macropore volumes decrease due to the ‘pore size controlled solubility’ effect, which causes dissolved calcium carbonate to precipitate in larger macropores.