Sensors (Nov 2020)

Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns

  • Unang Sunarya,
  • Yuli Sun Hariyani,
  • Taeheum Cho,
  • Jongryun Roh,
  • Joonho Hyeong,
  • Illsoo Sohn,
  • Sayup Kim,
  • Cheolsoo Park

DOI
https://doi.org/10.3390/s20216253
Journal volume & issue
Vol. 20, no. 21
p. 6253

Abstract

Read online

Gait analysis is commonly used to detect foot disorders and abnormalities such as supination, pronation, unstable left foot and unstable right foot. Early detection of these abnormalities could help us to correct the walking posture and avoid getting injuries. This paper presents extensive feature analyses on smart shoes sensor data, including pressure sensors, accelerometer and gyroscope signals, to obtain the optimum combination of the sensors for gait classification, which is crucial to implement a power-efficient mobile smart shoes system. In addition, we investigated the optimal length of data segmentation based on the gait cycle parameters, reduction of the feature dimensions and feature selection for the classification of the gait patterns. Benchmark tests among several machine learning algorithms were conducted using random forest, k-nearest neighbor (KNN), logistic regression and support vector machine (SVM) algorithms for the classification task. Our experiments demonstrated the combination of accelerometer and gyroscope sensor features with SVM achieved the best performance with 89.36% accuracy, 89.76% precision and 88.44% recall. This research suggests a new state-of-the-art gait classification approach, specifically on detecting human gait abnormalities.

Keywords