European Physical Journal C: Particles and Fields (Apr 2021)
Characterization of SABRE crystal NaI-33 with direct underground counting
- M. Antonello,
- I. J. Arnquist,
- E. Barberio,
- T. Baroncelli,
- J. Benziger,
- L. J. Bignell,
- I. Bolognino,
- F. Calaprice,
- S. Copello,
- I. Dafinei,
- D. D’Angelo,
- G. D’Imperio,
- M. D’Incecco,
- G. Di Carlo,
- M. Diemoz,
- A. Di Giacinto,
- A. Di Ludovico,
- W. Dix,
- A. R. Duffy,
- E. Hoppe,
- A. Ianni,
- M. Iannone,
- L. Ioannucci,
- S. Krishnan,
- G. J. Lane,
- I. Mahmood,
- A. Mariani,
- S. Milana,
- J. Mould,
- F. Nuti,
- D. Orlandi,
- V. Pettinacci,
- L. Pietrofaccia,
- S. Rahatlou,
- F. Scutti,
- M. Souza,
- A. E. Stuchbery,
- B. Suerfu,
- C. Tomei,
- P. Urquijo,
- C. Vignoli,
- A. Wallner,
- M. Wada,
- A. G. Williams,
- A. Zani,
- M. Zurowski
Affiliations
- M. Antonello
- INFN-Sezione di Milano
- I. J. Arnquist
- Pacific Northwest National Laboratory
- E. Barberio
- School of Physics, The University of Melbourne
- T. Baroncelli
- School of Physics, The University of Melbourne
- J. Benziger
- Chemical Engineering Department, Princeton University
- L. J. Bignell
- Department of Nuclear Physics, The Australian National University
- I. Bolognino
- INFN-Sezione di Milano
- F. Calaprice
- Physics Department, Princeton University
- S. Copello
- Gran Sasso Science Institute
- I. Dafinei
- INFN-Sezione di Roma
- D. D’Angelo
- INFN-Sezione di Milano
- G. D’Imperio
- INFN-Sezione di Roma
- M. D’Incecco
- INFN-Laboratori Nazionali del Gran Sasso
- G. Di Carlo
- INFN-Laboratori Nazionali del Gran Sasso
- M. Diemoz
- INFN-Sezione di Roma
- A. Di Giacinto
- INFN-Laboratori Nazionali del Gran Sasso
- A. Di Ludovico
- Physics Department, Princeton University
- W. Dix
- School of Physics, The University of Melbourne
- A. R. Duffy
- ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO)
- E. Hoppe
- Pacific Northwest National Laboratory
- A. Ianni
- INFN-Laboratori Nazionali del Gran Sasso
- M. Iannone
- INFN-Sezione di Roma
- L. Ioannucci
- INFN-Laboratori Nazionali del Gran Sasso
- S. Krishnan
- Centre for Astrophysics and Supercomputing, Swinburne University of Technology
- G. J. Lane
- Department of Nuclear Physics, The Australian National University
- I. Mahmood
- School of Physics, The University of Melbourne
- A. Mariani
- Gran Sasso Science Institute
- S. Milana
- INFN-Sezione di Roma
- J. Mould
- ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO)
- F. Nuti
- School of Physics, The University of Melbourne
- D. Orlandi
- INFN-Laboratori Nazionali del Gran Sasso
- V. Pettinacci
- INFN-Sezione di Roma
- L. Pietrofaccia
- Physics Department, Princeton University
- S. Rahatlou
- INFN-Sezione di Roma
- F. Scutti
- School of Physics, The University of Melbourne
- M. Souza
- Physics Department, Princeton University
- A. E. Stuchbery
- Department of Nuclear Physics, The Australian National University
- B. Suerfu
- Physics Department, Princeton University
- C. Tomei
- INFN-Sezione di Roma
- P. Urquijo
- School of Physics, The University of Melbourne
- C. Vignoli
- INFN-Laboratori Nazionali del Gran Sasso
- A. Wallner
- Department of Nuclear Physics, The Australian National University
- M. Wada
- Physics Department, Princeton University
- A. G. Williams
- The University of Adelaide
- A. Zani
- INFN-Sezione di Milano
- M. Zurowski
- School of Physics, The University of Melbourne
- DOI
- https://doi.org/10.1140/epjc/s10052-021-09098-5
- Journal volume & issue
-
Vol. 81,
no. 4
pp. 1 – 11
Abstract
Abstract Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low $$^{39}$$ 39 K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of $$^{226}$$ 226 Ra and $$^{228}$$ 228 Th inside the crystal to be $$5.9\pm 0.6~\upmu $$ 5.9 ± 0.6 μ Bq/kg and $$1.6\pm 0.3~\upmu $$ 1.6 ± 0.3 μ Bq/kg, respectively, which would indicate a contamination from $$^{238}$$ 238 U and $$^{232}$$ 232 Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to $$^{210}$$ 210 Pb out of equilibrium and a $$\alpha $$ α quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of $$\sim $$ ∼ 1 count/day/kg/keV in the [5–20] keV region.