Molecules (Sep 2024)
Advancing Bioanalytical Method Validation: A Comprehensive ICH M10 Approach for Validating LC–MS/MS to Quantify Fluoxetine in Human Plasma and Its Application in Pharmacokinetic Studies
Abstract
A fast and sample cleanup approach for fluoxetine in human plasma was developed using protein precipitation coupled with LC–MS-MS. Samples were treated with methanol prior to LC–MS-MS analysis. Chromatographic separation was performed on a reverse phase column with an isocratic mobile phase of methanol and 10 mM ammonium formate pH acidified with formic acid (80:20, v/v) at a flow rate of 0.2 mL/min. The run time was 4 min. Mass parameters were optimized to monitor transitions at m/z [M + H]+ 310 > > 148 for fluoxetine and m/z [M + H]+ 315.1 > > 153 for fluoxetine-d5 as an internal standard. The lower limit of quantification and the dynamic range were 0.25 and 0.25–50 ng/mL, respectively. Linearity was good for intra-day and inter-day validations (R2 = 0.999). The matrix effect was acceptable with CV% < 15 and accuracy% < 15. The hemolytic effect was negligible. Fluoxetine was stable in human plasma for 48 h at room temperature (25 °C), for 12 months frozen at −25 °C, for 48 h in an auto-sampler at 6 °C, and for three freeze/thaw cycles. The validated method was applied in a pharmacokinetic study to determine the concentration of fluoxetine in plasma samples. The study provides a fast and simple bioanalytical method for routine analysis and may be particularly useful for bioequivalence studies. The method was successfully applied to a pharmacokinetic study of fixed-dose fluoxetine in nine healthy volunteers.
Keywords