Journal of Inequalities and Applications (Feb 2020)
New estimations for the Berezin number inequality
Abstract
Abstract In this paper, by the definition of Berezin number, we present some inequalities involving the operator geometric mean. For instance, it is shown that if X , Y , Z ∈ L ( H ) $X, Y, Z\in {\mathcal{L}}(\mathcal{H})$ such that X and Y are positive operators, then ber r ( ( X ♯ Y ) Z ) ≤ ber ( ( Z ⋆ Y Z ) r q 2 q + X r p 2 p ) − 1 p inf λ ∈ Ω ( [ X ˜ ( λ ) ] r p 4 − [ ( Z ⋆ Y Z ) ˜ ( λ ) ] r q 4 ) 2 , $$\begin{aligned} \operatorname{ber}^{r} \bigl( ( X\mathbin{\sharp} Y ) Z \bigr) &\leq \operatorname{ber} \biggl(\frac{ ( Z^{\star }YZ ) ^{\frac{rq}{2}}}{q}+ \frac{X^{ \frac{rp}{2}}}{p} \biggr) -\frac{1}{p}\inf_{\lambda \in \varOmega } \bigl( \bigl[ \widetilde{X} ( \lambda ) \bigr] ^{\frac{rp}{4}}- \bigl[ \widetilde{ \bigl( Z^{\star }YZ \bigr) } ( \lambda ) \bigr] ^{ \frac{rq}{4}} \bigr) ^{2}, \end{aligned}$$ in which X ♯ Y = X 1 2 ( X − 1 2 Y X − 1 2 ) 1 2 X 1 2 $X\mathbin{\sharp} Y=X^{\frac{1}{2}} ( X^{-\frac{1}{2}}YX^{- \frac{1}{2}} ) ^{\frac{1}{2}}X^{\frac{1}{2}}$ , p ≥ q > 1 $p\geq q>1$ such that r ≥ 2 q $r\geq \frac{2}{q}$ and 1 p + 1 q = 1 $\frac{1}{p}+\frac{1}{q}=1$ .
Keywords