Antioxidants (Feb 2023)

Dieckol, Derived from the Edible Brown Algae <i>Ecklonia cava,</i> Attenuates Methylglyoxal-Associated Diabetic Nephropathy by Suppressing AGE–RAGE Interaction

  • Chi-Heung Cho,
  • Guijae Yoo,
  • Mingyeong Kim,
  • Ulfah Dwi Kurniawati,
  • In-Wook Choi,
  • Sang-Hoon Lee

DOI
https://doi.org/10.3390/antiox12030593
Journal volume & issue
Vol. 12, no. 3
p. 593

Abstract

Read online

The formation of advanced glycation end products (AGE) is linked to the pathogenesis of diabetic nephropathy. The aim of this work was to assess the therapeutic potential and underlying mechanism of action of dieckol (DK), isolated from Ecklonia cava, on renal damage induced by methylglyoxal (MGO) in mouse glomerular mesangial cells. The antiglycation properties of DK were evaluated using ELISA. We conducted molecular docking, immunofluorescence analysis, and Western blotting to confirm the mechanism by which DK prevents AGE-related diabetic nephropathy. DK treatment exhibited antiglycation properties through the inhibition of AGE production, inhibition of cross-linking between AGE and collagen, and breaking of its cross-linking. DK pretreatment exhibited protective effects on renal cells by suppressing MGO-induced intracellular reactive oxygen species (ROS) formation, intracellular MGO and AGE accumulation, activation of the apoptosis cascade and apoptosis-related protein expression, activation of receptor for AGE (RAGE) protein expression, and suppression of the glyoxalase system. Furthermore, DK exhibited a stronger binding affinity for RAGE than AGE, which was confirmed as exerting a competitive inhibitory effect on the AGE–RAGE interaction. These results demonstrated that DK is a potential natural AGE inhibitor that can be utilized to prevent and treat AGE-induced diabetic nephropathy.

Keywords