Tongxin xuebao (Jun 2020)

GAD:topology-aware time series anomaly detection

  • Qi QI,
  • Runye SHEN,
  • Jingyu WANG

Journal volume & issue
Vol. 41
pp. 152 – 160

Abstract

Read online

To solve the problems of anomaly detection,intelligent operation,root cause analysis of node equipment in the network,a graph-based gated convolutional codec anomaly detection model was proposed for time series data such as link delay,network throughput,and device memory usage.Considering the real-time requirements of network scenarios and the impact of network topology connections on time series data,the time dimension features of time series were extracted in parallel based on gated convolution and the spatial dependencies were mined through graph convolution.After the encoder composed of the spatio-temporal feature extraction module encoded the original input time series data,the decoder composed of the convolution module was used to reconstruct the time series data.The residuals between the original data and the reconstructed data were further used to calculate the anomaly score and detect anomalies.Experiments on public data and simulation platforms show that the proposed model has higher recognition accuracy than the current time series anomaly detection benchmark algorithm.

Keywords