Frontiers in Plant Science (Oct 2022)

Identification of the bZIP gene family and regulation of metabolites under salt stress in isatis indigotica

  • Ming Jiang,
  • Zhen Wang,
  • Weichao Ren,
  • Song Yan,
  • Nannan Xing,
  • Zhanping Zhang,
  • Hui Li,
  • Wei Ma

DOI
https://doi.org/10.3389/fpls.2022.1011616
Journal volume & issue
Vol. 13

Abstract

Read online

The bZIP transcription factor family plays important roles in plant growth and development, response to stress, and regulation of secondary metabolite biosynthesis. The identification and molecular function of bZIP gene have been deeply studied in the model plant Arabidopsis thaliana, but it has not been reported in the medicinal plant Isatis indigotica. In this study, 65 IibZIP genes were identified in the genome of I. indigotica, which were distributed on seven chromosomes, were highly conserved, could be classified into 11 subgroups. Transcriptomic and metabolomic data for leaves of I. indigotica exposed to salt stress were analyzed to construct an IibZIP gene co-expression network and metabolite correlation network. Seventeen IibZIP genes were co-expressed with 79 transcription factors, and GO and KEGG enrichment analysis showed that most of these genes were associated with abiotic stress and hormone responses of plants. 17 IibZIP genes regulated 110 metabolites through 92 transcription factor associations. In addition, IibZIP23, IibZIP38 and IibZIP51 were associated with six metabolites including three alkaloids (quinoline alkaloid stylopine, indole alkaloids tabersonine and indole-3-acetic acid), flavonoid myricetin 3-O-galactoside, and two primary metabolites 2-hydroxy-6-aminopurine, 3-dehydroshikimic acid were strongly correlated. This study provides data for identification of the IibZIP gene family and their regulation of metabolites in response to salt stress.

Keywords