PLoS ONE (Jan 2020)

NMR-based metabolomic profile of hypercholesterolemic human sera: Relationship with in vitro gene expression?

  • Manuela Grimaldi,
  • Angelica Palisi,
  • Carmen Marino,
  • Paola Montoro,
  • Anna Capasso,
  • Sara Novi,
  • Mario Felice Tecce,
  • Anna Maria D'Ursi

DOI
https://doi.org/10.1371/journal.pone.0231506
Journal volume & issue
Vol. 15, no. 4
p. e0231506

Abstract

Read online

Hypercholesterolaemia is considered an important cause of atherosclerotic cardiovascular disease. In a previous investigation, we demonstrated that cultured hepatoma cells treated with hypercholesterolaemic sera compared with cells treated with normocholesterolaemic sera show overexpression of mRNAs related to mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGCS2). In the present work, using an NMR metabolomic analysis, we demonstrate that the hypercholesterolaemic blood sera previously used to treat cultured hepatoma cells are characterized by a metabolomic profile that is significantly different from the normocholesterolaemic sera. Acetate, acetone, 2-hydroxybutyrate, cysteine, valine, and glutamine are the metabolites distinguishing the two groups. Abnormalities in the concentrations of these metabolites reflect alterations in energy-related pathways, such as pantothenate and CoA biosynthesis, pyruvate, glycolysis/gluconeogenesis, the citrate cycle, and ketone bodies. Regarding ketone bodies, the pathway is regulated by HMGCS2; therefore, serum samples previously found to be able to increase HMGCS2 mRNA levels in cultured cells also contain higher amounts of the metabolites of its encoded enzyme protein product.