Sensors (Apr 2019)

Object Tracking Based on Vector Convolutional Network and Discriminant Correlation Filters

  • Yuan Liu,
  • Xiubao Sui,
  • Xiaodong Kuang,
  • Chengwei Liu,
  • Guohua Gu,
  • Qian Chen

DOI
https://doi.org/10.3390/s19081818
Journal volume & issue
Vol. 19, no. 8
p. 1818

Abstract

Read online

Due to the fast speed and high efficiency, discriminant correlation filter (DCF) has drawn great attention in online object tracking recently. However, with the improvement of performance, the costs are the increase in parameters and the decline of speed. In this paper, we propose a novel visual tracking algorithm, namely VDCFNet, and combine DCF with a vector convolutional network (VCNN). We replace one traditional convolutional filter with two novel vector convolutional filters in the convolutional stage of our network. This enables our model with few memories (only 59 KB) trained offline to learn the generic image features. In the online tracking stage, we propose a coarse-to-fine search strategy to solve drift problems under fast motion. Besides, we update model selectively to speed up and increase robustness. The experiments on OTB benchmarks demonstrate that our proposed VDCFNet can achieve a competitive performance while running over real-time speed.

Keywords