Biotechnology for Biofuels and Bioproducts (Nov 2023)
De novo biosynthesis of 2-hydroxyterephthalic acid, the monomer for high-performance hydroxyl modified PBO fiber, by enzymatic Kolbe–Schmitt reaction with CO2 fixation
Abstract
Abstract Background High-performance poly(p-phenylenebenzobisoxazole) (PBO) fiber, with excellent mechanical properties (stiffness, strength, and toughness), high thermal stability combined and light weight, are widely employed in automotive and aerospace composites, body armor and sports goods. Hydroxyl modified PBO (HPBO) fiber shows better photostability and interfacial shear strength. 2-Hydroxyterephthalic acid (2-HTA), the monomer for the HPBO fiber, is usually synthesized by chemical method, which has poor space selectivity and high energy consumption. The enzymatic Kolbe–Schmitt reaction, which carboxylates phenolic substrates to generate hydroxybenzoic acids with bicarbonate/CO2, was applied in de novo biosynthesis of 2-HTA with CO2 fixation. Results The biosynthesis of 2-HTA was achieved by the innovative application of hydroxybenzoic acid (de)carboxylases to carboxylation of 3-hydroxybenzoic acid (3-HBA) at the para-position of the benzene carboxyl group, known as enzymatic Kolbe–Schmitt reaction. 2,3-Dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) were expressed in recombinant E. coli and showed highest activity. The yield of 2-HTA was 108.97 ± 2.21 μg/L/mg protein in the whole-cell catalysis. In addition, two amino acid substitutions, F27G and T62A, proved to be of great help in improving 2,3-DHBD activity. The double site mutation F27G/T62A increased the production of 2-HTA in the whole-cell catalysis by 24.7-fold, reaching 2.69 ± 0.029 mg/L/mg protein. Moreover, de novo biosynthetic pathway of 2-HTA was constructed by co-expression of 2,3-DHBD_Ao and 3-hydroxybenzoate synthase Hyg5 in S. cerevisiae S288C with Ura3, Aro7 and Trp3 knockout. The engineered strain synthesized 45.40 ± 0.28 μg/L 2-HTA at 36 h in the CO2 environment. Conclusions De novo synthesis of 2-HTA has been achieved, using glucose as a raw material to generate shikimic acid, chorismic acid, and 3-HBA, and finally 2-HTA. We demonstrate the strong potential of hydroxybenzoate (de)carboxylase to produce terephthalic acid and its derivatives with CO2 fixation.
Keywords