Energies (Jun 2020)
Effect of the Particle Size on the Near-Wall Turbulence Characteristics of the Polymer Fluid Flow and the Critical Velocity Required for Particle Removal from the Sand Bed Deposited in Horizontal Wells
Abstract
Water-based polymer drilling fluids are commonly used for drilling long horizontal wells where eliminating the drilling fluid-related formation damage and minimizing the environmental impact of the drilling fluids are the main concerns. An experimental study was conducted to investigate the turbulent flow of a polymer fluid over a stationary sand bed deposited in a horizontal pipeline. The main objectives of the study were to determine the effects of sand particle size on the critical velocity required for the onset of the bed erosion and the near-wall turbulence characteristics of the polymer fluid flow over the sand bed. Industrial sand particles having three different size ranges (20/40, 30/50, 40/70) were used for the experiments. The particle image velocimetry (PIV) technique was used to determine instantaneous local velocity distributions and near-wall turbulence characteristics (such as Reynolds stress, axial and turbulence intensity profiles) of the polymer fluid flow over the stationary sand bed under turbulent flow conditions. The critical velocity for the onset of the particle removal from a stationary sand bed using a polymer fluid flow was affected by the sand particle size. The critical velocity required for the particle removal from the bed deposits did not change monotonously with the changing particle size. When polymer fluids were used for hole cleaning, the particle size effect on the critical velocity varied (i.e., critical velocity increased or decreased) depending on the relative comparison of the sand particle size with respect to the thickness of the viscous sublayer under turbulent flow condition.
Keywords