Journal of Materials Research and Technology (May 2024)

Surface wettability and tribological performance of Ni-based nanocomposite moulds against polymer materials

  • Tianyu Guan,
  • Akshaya Jagannath,
  • Yohann Delaunay,
  • Pieter Daniel Haasbroek,
  • Quanliang Su,
  • Per Magnus Kristiansen,
  • Nan Zhang

Journal volume & issue
Vol. 30
pp. 8506 – 8518

Abstract

Read online

In the mass-production of microfluidic devices through micro hot embossing/injection moulding, the longevity of mould inserts is influenced by elevated adhesion and friction between the polymer and the mould. Thus, accurate prediction of mould lifespan requires a comprehensive understanding of surface wettability and tribological performance during polymer contact. The current study addresses this gap by characterizing fabricated micro-structured Ni, Ni-WS2, and Ni-PTFE nanocomposite moulds (surface morphologies, crystal structures and microhardness) to investigate inherent lubrication mechanisms. Surface wettability of mould material was systematically studied by measuring the contact angles with eight different polymer melts. Pin-on-disk tests with polymer pins made of cyclic olefin copolymer (COC 8007), polypropylene (PP), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were conducted to elucidate the wear resistance of the nanocomposite moulds. Pressure-dependent friction coefficient and wear resistance were further explored under increasing external loads, simulating the actual moulding processes where contact pressure may vary considerably depending on the part shape. Results indicate that Ni-WS2 exhibits the highest microhardness (532 Hv), followed by Ni-PTFE (465 Hv) and Ni (198 Hv). Notably, Ni-PTFE demonstrates exceptional hydrophobicity against all polymer melts, signifying low surface energy during polymer contact. Moreover, both nanocomposite moulds exhibit reduced friction coefficients and enhanced wear resistance across various polymers. Counterintuitively, despite its lower hardness, the Ni-PTFE mould displays superior wear resistance against the COC pin under higher loads, while the Ni-WS2 mould experiences severe adhesive wear, as observed from wear morphology and profile analysis. This finding establishes the Ni-PTFE as a promising alternative as a mould insert material for precision manufacturing.

Keywords