Microbial Cell Factories (Sep 2009)

Surface display of heterologous proteins in <it>Bacillus thuringiensis </it>using a peptidoglycan hydrolase anchor

  • Cai Hao,
  • Yu Ziniu,
  • Jiang Mengtian,
  • Shao Xiaohu,
  • Li Lin

DOI
https://doi.org/10.1186/1475-2859-8-48
Journal volume & issue
Vol. 8, no. 1
p. 48

Abstract

Read online

Abstract Background Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein as the anchoring motif. In this study, we developed a new surface display system in B. thuringiensis using a LysM-containing peptidoglycan hydrolase, endo-β-N-acetylglucosaminidase (Mbg), as the anchor protein. Results Homology searching in the B. thuringiensis YBT-1520 genome revealed a putative peptidoglycan hydrolase gene. The encoded protein, Mbg, exhibited substantial cell-wall binding capacity. The deduced amino acid sequence of Mbg was structurally distinguished as an N-terminal domain with two tandemly aligned LysMs and a C-terminal catalytic domain. A GFP-fusion protein was expressed and used to verify the surface localization by Western blot, flow cytometry, protease accessibility, SDS sensitivity, immunofluorescence, and electron microscopy assays. Low-level constitutive expression of Mbg was elevated by introducing a sporulation-independent promoter of cry3Aa. Truncated Mbg domains with separate N-terminus (Mbgn), C-terminus (Mbgc), LysM1, or LysM2 were further compared for their cell-wall displaying efficiencies. The Mbgn moiety contributed to cell-wall anchoring, while LysM1 was the active domain. Two tandemly repeated Mbgns exhibited the highest display activity, while the activity of three repeated Mbgns was decreased. A heterologous bacterial multicopper oxidase (WlacD) was successfully displayed onto the surface of B. thuringiensis target cells using the optimum (Mbgn)2 anchor, without radically altering its catalytic activity. Conclusion Mbg can be a functional anchor protein to target different heterologous proteins onto the surface of B. thuringiensis cells. Since the LysM domain appears to be universal in Gram-positive bacteria, the strategy presented here could be applicable in other bacteria for developing this type of system.