Nanomaterials (Apr 2023)

Free Vibration Analysis of Functionally Graded Porous Cylindrical Panels Reinforced with Graphene Platelets

  • Jin-Rae Cho

DOI
https://doi.org/10.3390/nano13091441
Journal volume & issue
Vol. 13, no. 9
p. 1441

Abstract

Read online

The free vibration of functionally graded porous cylindrical shell panels reinforced with graphene platelets (GPLs) was numerically investigated. The free vibration problem was formulated using the first-order shear deformation shell theory in the framework of the 2-D natural element method (NEM). The effective material properties of the GPL-reinforced shell panel were evaluated by employing the Halpin–Tsai model and the rule of mixtures and were modified by considering the porosity distribution. The cylindrical shell surface was transformed into the 2-D planar NEM grid to avoid complex computation, and the concept of the MITC3+shell element was employed to suppress shear locking. The numerical method was validated through benchmark experiments, and the free vibration characteristics of FG-GPLRC porous cylindrical shell panels were investigated. The numerical results are presented for four GPL distribution patterns (FG-U, FG-X, FG-O, and FG-Λ) and three porosity distributions (center- and outer-biased and uniform). The effects of GPL weight, porosity amount, length–thickness and length–radius ratios, and the aspect ratio of the shell panel and boundary condition on the free vibration characteristics are discussed in detail. It is found from the numerical results that the proposed numerical method accurately predicts the natural frequencies of FG-GPLRC porous cylindrical shell panels. Moreover, the free vibration of FG-GPLRC porous cylindrical shell panels is significantly influenced by the distribution pattern as well as the amount of GPLs and the porosity.

Keywords