Conflict and Health (Sep 2011)

Uranium and other contaminants in hair from the parents of children with congenital anomalies in Fallujah, Iraq

  • Hamdan Malak,
  • Busby Christopher,
  • Tafash Muhammed,
  • Alaani Samira,
  • Blaurock-Busch Eleonore

DOI
https://doi.org/10.1186/1752-1505-5-15
Journal volume & issue
Vol. 5, no. 1
p. 15

Abstract

Read online

Abstract Background Recent reports have drawn attention to increases in congenital birth anomalies and cancer in Fallujah Iraq blamed on teratogenic, genetic and genomic stress thought to result from depleted Uranium contamination following the battles in the town in 2004. Contamination of the parents of the children and of the environment by Uranium and other elements was investigated using Inductively Coupled Plasma Mass Spectrometry. Hair samples from 25 fathers and mothers of children diagnosed with congenital anomalies were analysed for Uranium and 51 other elements. Mean ages of the parents was: fathers 29.6 (SD 6.2); mothers: 27.3 (SD 6.8). For a sub-group of 6 women, long locks of hair were analysed for Uranium along the length of the hair to obtain information about historic exposures. Samples of soil and water were also analysed and Uranium isotope ratios determined. Results Levels of Ca, Mg, Co, Fe, Mn, V, Zn, Sr, Al, Ba, Bi, Ga, Pb, Hg, Pd and U (for mothers only) were significantly higher than published mean levels in an uncontaminated population in Sweden. In high excess were Ca, Mg, Sr, Al, Bi and Hg. Of these only Hg can be considered as a possible cause of congenital anomaly. Mean levels for Uranium were 0.16 ppm (SD: 0.11) range 0.02 to 0.4, higher in mothers (0.18 ppm SD 0.09) than fathers (0.11 ppm; SD 0.13). The highly unusual non-normal Fallujah distribution mean was significantly higher than literature results for a control population Southern Israel (0.062 ppm) and a non-parametric test (Mann Whitney-Wilcoxon) gave p = 0.016 for this comparison of the distribution. Mean levels in Fallujah were also much higher than the mean of measurements reported from Japan, Brazil, Sweden and Slovenia (0.04 ppm SD 0.02). Soil samples show low concentrations with a mean of 0.76 ppm (SD 0.42) and range 0.1-1.5 ppm; (N = 18). However it may be consistent with levels in drinking water (2.28 μgL-1) which had similar levels to water from wells (2.72 μgL-1) and the river Euphrates (2.24 μgL-1). In a separate study of a sub group of mothers with long hair to investigate historic Uranium excretion the results suggested that levels were much higher in the past. Uranium traces detected in the soil samples and the hair showed slightly enriched isotopic signatures for hair U238/U235 = (135.16 SD 1.45) compared with the natural ratio of 137.88. Soil sample Uranium isotope ratios were determined after extraction and concentration of the Uranium by ion exchange. Results showed statistically significant presence of enriched Uranium with a mean of 129 with SD5.9 (for this determination, the natural Uranium 95% CI was 132.1 Conclusions Whilst caution must be exercised about ruling out other possibilities, because none of the elements found in excess are reported to cause congenital diseases and cancer except Uranium, these findings suggest the enriched Uranium exposure is either a primary cause or related to the cause of the congenital anomaly and cancer increases. Questions are thus raised about the characteristics and composition of weapons now being deployed in modern battlefields

Keywords