BMC Plant Biology (Dec 2018)

Panicle Morphology Mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis

  • Yan Li,
  • Xuemei Li,
  • Debao Fu,
  • Changyin Wu

DOI
https://doi.org/10.1186/s12870-018-1577-x
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Panicle architecture is one of the main important agronomical traits that determine branch number and grain number in rice. Although a large number of genes involved in panicle development have been identified in recent years, the complex processes of inflorescence patterning need to be further characterized in rice. Brassinosteroids (BRs) are a class of steroid phytohormones. A great understanding of how BRs contribute to plant height and leaf erectness have been reported, however, the molecular and genetic mechanisms of panicle architecture influenced by BRs remain unclear. Results Here, we identified PMM1, encoding a cytochrome P450 protein involved in BRs biosynthesis, and characterized its role in panicle architecture in rice. Three alleles of pmm1 were identified from our T-DNA insertional mutant library. Map-based cloning revealed that a large fragment deletion from the 2nd to 9th exons of PMM1 was responsible for the clustered primary branch morphology in pmm1–1. PMM1 is a new allele of DWARF11 (D11) PMM1 transcripts are preferentially expressed in young panicles, particularly expressed in the primordia of branches and spikelets during inflorescence development. Furthermore, overexpression of OsDWARF4 (D4), another gene encoding cytochrome P450, completely rescued the abnormal panicle phenotype of pmm1–1. Overall, it can be concluded that PMM1 is an important gene involved in BRs biosynthesis and affecting the differentiation of spikelet primordia and patterns of panicle branches in rice. Conclusions PMM1 is a new allele of D11, which encodes a cytochrome P450 protein involved in BRs biosynthesis pathway. Overexpression of D4 could successfully rescue the abnormal panicle architecture of pmm1 plants, indicating that PMM1/D11 and D4 function redundantly in BRs biosynthesis. Thus, our results demonstrated that PMM1 determines the inflorescence architecture by controlling brassinosteroid biosynthesis in rice.

Keywords