Proceedings (Oct 2018)

A Hybrid Model Using Hidden Markov Chain and Logic Model for Daily Living Activity Recognition

  • Paula LAGO,
  • Sozo INOUE

DOI
https://doi.org/10.3390/proceedings2191266
Journal volume & issue
Vol. 2, no. 19
p. 1266

Abstract

Read online

We detail the solution to the UCAmI Cup Challenge to recognizing on going activities at home from sensor measurements. We use binary sensors and proximity sensor measurements for the recognition. We use an hybrid strategy, combining a probabilistic model and a definition-based model. The former consists of a Hidden Markov Model using the result of a neural network as emission probabilities. It is trained with the labelled data provided by the Cup. The latter approach takes advantage of the descriptions provided for each of the activities which are expressed in logical statements based on the sensors states. We then combine the results with a weighted average. We compare the performance of each individual strategy and of the combined strategy.

Keywords