Molecules (Oct 2024)

Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries

  • Zhaoyang Wang,
  • Zihan Zhou,
  • Xing Gao,
  • Qian Liu,
  • Jianzong Man,
  • Fanghui Du,
  • Fangyu Xiong

DOI
https://doi.org/10.3390/molecules29204813
Journal volume & issue
Vol. 29, no. 20
p. 4813

Abstract

Read online

The commercialization of sodium batteries faces many challenges, one of which is the lack of suitable high-quality separators. Herein, we presented a novel natural silkworm cocoon-derived separator (SCS) obtained from the cocoon inner membrane after a simple degumming process. A Na||Na symmetric cell assembled with this separator can be stably cycled for over 400 h under test conditions of 0.5 mA cm−2–0.5 mAh cm−2. Moreover, the Na||SCS||Na3V2(PO4)3 full cell exhibits an initial capacity of 79.3 mAh g−1 at 10 C and a capacity retention of 93.6% after 1000 cycles, which far exceeded the 57.5 mAh g−1 and 42.1% of the full cell using a commercial glass fiber separator (GFS). The structural origin of this excellent electrochemical performance lies in the fact that cationic functional groups (such as amino groups) on silkworm proteins can de-solvate Na-ions by anchoring the ClO4− solvent sheath, thereby enhancing the transference number, transport kinetics and deposition/dissolution properties of Na-ions. In addition, the SCS has significantly better mechanical properties and thinness indexes than the commercial GFS, and, coupled with the advantages of being natural, cheap, non-polluting and degradable, it is expected to be used as a commercialized sodium battery separator material.

Keywords