ChemEngineering (Mar 2024)

Investigation on UV Degradation and Mechanism of 6:2 Fluorotelomer Sulfonamide Alkyl Betaine, Based on Model Compound Perfluorooctanoic Acid

  • Naveed Ahmed,
  • Marion Martienssen,
  • Isaac Mbir Bryant,
  • Davide Vione,
  • Maria Concetta Bruzzoniti,
  • Ramona Riedel

DOI
https://doi.org/10.3390/chemengineering8020032
Journal volume & issue
Vol. 8, no. 2
p. 32

Abstract

Read online

The UV treatment of 6:2 FTAB involves the mitigation of this persistent chemical by the impact of ultraviolet radiation, which is known for its resistance to environmental breakdown. UV treatment of PFOA and/or 6:2 FTAB, and the role of responsible species and their mechanism have been presented. Our investigation focused on the degradation of perfluorooctanoic acid (PFOA) and 6:2 fluorotelomer sulfonamide alkyl betaine (6:2 FTAB, Capstone B), using UV photolysis under various pH conditions. Initially, we used PFOA as a reference, finding a 90% decomposition after 360 min at the original (unadjusted) pH 5.6, with a decomposition rate constant of (1.08 ± 0.30) × 10−4 sec−1 and a half-life of 107 ± 2 min. At pH 4 and 7, degradation averaged 85% and 80%, respectively, while at pH 10, it reduced to 57%. For 6:2 FTAB at its natural pH 6.5, almost complete decomposition occurred. The primary UV transformation product was identified as 6:2 fluorotelomer sulfonic acid (6:2 FTSA), occasionally accompanied by shorter-chain perfluoroalkyl acids (PFAAs) including PFHpA, PFHxA, and PFPeA. Interestingly, the overall decomposition percentages were unaffected by pH for 6:2 FTAB, though pH influenced rate constants and half-lives. In PFOA degradation, direct photolysis and reaction with hydrated electrons were presumed mechanisms, excluding the involvement of hydroxyl radicals. The role of superoxide radicals remains uncertain. For 6:2 FTAB, both direct and indirect photolysis were observed, with potential involvement of hydroxyl, superoxide radicals, and/or other reactive oxygen species (ROS). Clarification is needed regarding the role of eaq− in the degradation of 6:2 FTAB.

Keywords