Cellular and Molecular Gastroenterology and Hepatology (Jan 2024)

CDKN2A-p16 Deletion and Activated KRASG12D Drive Barrett’s-Like Gland Hyperplasia-Metaplasia and Synergize in the Development of Dysplasia Precancer LesionsSummary

  • Jing Sun,
  • Jorge L. Sepulveda,
  • Elena V. Komissarova,
  • Caitlin Hills,
  • Tyler D. Seckar,
  • Narine M. LeFevre,
  • Hayk Simonyan,
  • Colin Young,
  • Gloria Su,
  • Armando Del Portillo,
  • Timothy C. Wang,
  • Antonia R. Sepulveda

Journal volume & issue
Vol. 17, no. 5
pp. 769 – 784

Abstract

Read online

Background & Aims: Barrett’s esophagus is the precursor of esophageal dysplasia and esophageal adenocarcinoma. CDKN2A-p16 deletions were reported in 34%–74% of patients with Barrett’s esophagus who progressed to dysplasia and esophageal adenocarcinoma, suggesting that p16 loss may drive neoplastic progression. KRAS activation frequently occurs in esophageal adenocarcinoma and precancer lesions. LGR5+ stem cells in the squamocolumnar-junction (SCJ) of mouse stomach contribute as Barrett’s esophagus progenitors. We aimed to determine the functional effects of p16 loss and KRAS activation in Barrett’s-like metaplasia and dysplasia development. Methods: We established mouse models with conditional knockout of CDKN2A-p16 (p16KO) and/or activated KRASG12D expression targeting SCJ LGR5+ cells in interleukin 1b transgenic mice and characterized histologic alterations (mucous-gland hyperplasia/metaplasia, inflammation, and dysplasia) in mouse SCJ. Gene expression was determined by microarray, RNA sequencing, and immunohistochemistry of SCJ tissues and cultured 3-dimensional organoids. Results: p16KO mice exhibited increased mucous-gland hyperplasia/metaplasia versus control mice (P = .0051). Combined p16KO+KRASG12D resulted in more frequent dysplasia and higher dysplasia scores (P = .0036), with 82% of p16KO+KRASG12D mice developing high-grade dysplasia. SCJ transcriptome analysis showed several activated pathways in p16KO versus control mice (apoptosis, tumor necrosis factor-α/nuclear factor-kB, proteasome degradation, p53 signaling, MAPK, KRAS, and G1-to-S transition). Conclusions: p16 deletion in LGR5+ cell precursors triggers increased SCJ mucous-gland hyperplasia/metaplasia. KRASG12D synergizes with p16 deletion resulting in higher grades of SCJ glandular dysplasia, mimicking Barrett’s high-grade dysplasia. These genetically modified mouse models establish a functional role of p16 and activated KRAS in the progression of Barrett’s-like lesions to dysplasia in mice, representing an in vivo model of esophageal adenocarcinoma precancer. Derived 3-dimensional organoid models further provide in vitro modeling opportunities of esophageal precancer stages.

Keywords