PLoS ONE (Jan 2016)

Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.).

  • Akio Onogi,
  • Osamu Ideta,
  • Takuma Yoshioka,
  • Kaworu Ebana,
  • Masanori Yamasaki,
  • Hiroyoshi Iwata

DOI
https://doi.org/10.1371/journal.pone.0148609
Journal volume & issue
Vol. 11, no. 2
p. e0148609

Abstract

Read online

Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits.