C (Apr 2020)

Review on Activated Carbons by Chemical Activation with FeCl<sub>3</sub>

  • Jorge Bedia,
  • Manuel Peñas-Garzón,
  • Almudena Gómez-Avilés,
  • Juan J. Rodriguez,
  • Carolina Belver

DOI
https://doi.org/10.3390/c6020021
Journal volume & issue
Vol. 6, no. 2
p. 21

Abstract

Read online

This study reviews the most relevant results on the synthesis, characterization, and applications of activated carbons obtained by novel chemical activation with FeCl3. The text includes a description of the activation mechanism, which compromises three different stages: (1) intense de-polymerization of the carbon precursor (up to 300 °C), (2) devolatilization and formation of the inner porosity (between 300 and 700 °C), and (3) dehydrogenation of the fixed carbon structure (>700 °C). Among the different synthesis conditions, the activation temperature, and, to a lesser extent, the impregnation ratio (i.e., mass ratio of FeCl3 to carbon precursor), are the most relevant parameters controlling the final properties of the resulting activated carbons. The characteristics of the carbons in terms of porosity, surface chemistry, and magnetic properties are analyzed in detail. These carbons showed a well-developed porous texture mainly in the micropore size range, an acidic surface with an abundance of oxygen surface groups, and a superparamagnetic character due to the presence of well-distributed iron species. These properties convert these carbons into promising candidates for different applications. They are widely analyzed as adsorbents in aqueous phase applications due to their porosity, surface acidity, and ease of separation. The presence of stable and well-distributed iron species on the carbons’ surface makes them promising catalysts for different applications. Finally, the presence of iron compounds has been shown to improve the graphitization degree and conductivity of the carbons; these are consequently being analyzed in energy storage applications.

Keywords