Advances in Astronomy (Jan 2019)

Anthropic Principle’s Predicting Symmetric Distribution Matter Strata, Their Physics Laws, and Verifications

  • Changyu Huang,
  • Yong-Chang Huang

DOI
https://doi.org/10.1155/2019/2501417
Journal volume & issue
Vol. 2019

Abstract

Read online

This paper shows anthropic principle’s predicting symmetric distribution matter strata, their physics laws, and verifications, concretely deduces characteristic time, energy, and temperature expressions at different scales, discovers four interesting invariant quantities, shows homeomorphic theorem of space map, and naturally presents a supersymmetric scale energy. We further discover that any infinitesimal space has the same proportional structure space; namely, they have renormalization group invariance. Consequently, this paper shows that the region of any nth level Plank-scope is from the nth level Planck scale to the (n+1)​th level Planck scale, where the different matters of the nthlevel Planck scale build up the (n+1)th level Planck scale matter. The branches of physics science for this region include the nth level Planck scale matter dynamics and the nth level Planck scale matter group dynamics. The nth level Planck scale matter group dynamics describe how the nth level Planck scale matter constructs the (n+1)th level Planck scale matter and how the different matters of the nth level Planck scale evolve in the group system. This paper discovers that the different matters below Planck scale can exist with our matter world at the same time and same place and may be some candidates for dark matter; furthermore, this paper shows a relative theorem of matter scale: for the world of any nth level, the matters’ sizes are relative, not absolute. Evidently, the discoveries of both the symmetrical distribution scales and the relations among the corresponding different physics laws from infinitesimal to infinitely large scales give a scientific solid development platform for formation of new scientific branches and deeper development of old scientific branches, because we can precisely construct many kinds of scientific theories relevant to all the corresponding matter strata. All the branch sciences of different matter strata up to now naturally need to be included in the framework of the new scientific system of physics.