Remote Sensing (Apr 2023)
GRACE Downscaler: A Framework to Develop and Evaluate Downscaling Models for GRACE
Abstract
Monitoring and managing groundwater resources is critical for sustaining livelihoods and supporting various human activities, including irrigation and drinking water supply. The most common method of monitoring groundwater is well water level measurements. These records can be difficult to collect and maintain, especially in countries with limited infrastructure and resources. However, long-term data collection is required to characterize and evaluate trends. To address these challenges, we propose a framework that uses data from the Gravity Recovery and Climate Experiment (GRACE) mission and downscaling models to generate higher-resolution (1 km) groundwater predictions. The framework is designed to be flexible, allowing users to implement any machine learning model of interest. We selected four models: deep learning model, gradient tree boosting, multi-layer perceptron, and k-nearest neighbors regressor. To evaluate the effectiveness of the framework, we offer a case study of Sunflower County, Mississippi, using well data to validate the predictions. Overall, this paper provides a valuable contribution to the field of groundwater resource management by demonstrating a framework using remote sensing data and machine learning techniques to improve monitoring and management of this critical resource, especially to those who seek a faster way to begin to use these datasets and applications.
Keywords