Nutraceuticals (Oct 2023)

The Novel Synbiotic, AG1<sup>®</sup>, Increases Short-Chained Fatty Acid Production in the Simulator of Human Intestinal Microbial Ecosystem (SHIME) Model<sup>®</sup>

  • Trevor O. Kirby,
  • Jeremy R. Townsend,
  • Philip A. Sapp,
  • Marlies Govaert,
  • Cindy Duysburgh,
  • Tess M. Marshall,
  • Massimo Marzorati,
  • Ralph Esposito

DOI
https://doi.org/10.3390/nutraceuticals3040035
Journal volume & issue
Vol. 3, no. 4
pp. 489 – 498

Abstract

Read online

Recently, there is growing usage of prebiotics and probiotics as dietary supplements due to their purported health benefits. AG1® (AG1) is a novel foundational nutrition supplement which contains vitamins, minerals, phytonutrients, wholefood concentrates, adaptogens, and functional mushrooms. AG1 could be classified as a synbiotic because it contains traditional and non-traditional prebiotics (e.g., inulin and phytonutrients) as well as lactic-acid-producing probiotics. The purpose of this study was to employ the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) model, which measures various aspects of gastrointestinal fermentation, to investigate the synbiotic effects of AG1. The SHIME experiment quantified gas production, changes in pH, and byproducts of carbohydrate and protein fermentation at baseline, 1, 24, and 48 h following the administration of AG1 or a blank control. The results indicated that AG1 significantly increased (p p = 0.001; 49.0% increase) and propionate (p p = 0.02; 5.1% increase) but did not promote significant branched-chain SCFA production. These data suggest fermentation occurred in a transplanted human colonic microbiota and these processes were enhanced by the AG1 nutritional supplement. Ultimately, AG1 showed preclinical evidence as a synbiotic given the significant increases in total SCFA production, acetate, propionate, and other metabolic byproducts of fermentation.

Keywords