Cubo (Apr 2024)

Global convergence analysis of Caputo fractional Whittaker method with real world applications

  • Sapan Kumar Nayak,
  • P. K. Parida

DOI
https://doi.org/10.56754/0719-0646.2601.167
Journal volume & issue
Vol. 26, no. 1
pp. 167 – 190

Abstract

Read online

The present article deals with the effect of convexity in the study of the well-known Whittaker iterative method, because an iterative method converges to a unique solution \(t^*\) of the nonlinear equation \(\psi(t)=0\) faster when the function's convexity is smaller. Indeed, fractional iterative methods are a simple way to learn more about the dynamic properties of iterative methods, i.e., for an initial guess, the sequence generated by the iterative method converges to a fixed point or diverges. Often, for a complex root search of nonlinear equations, the selective real initial guess fails to converge, which can be overcome by the fractional iterative methods. So, we have studied a Caputo fractional double convex acceleration Whittaker's method (CFDCAWM) of order at least (\(1+2\zeta\)) and its global convergence in broad ways. Also, the faster convergent CFDCAWM method provides better results than the existing Caputo fractional Newton method (CFNM), which has (\(1+\zeta\)) order of convergence. Moreover, we have applied both fractional methods to solve the nonlinear equations that arise from different real-life problems.

Keywords