Atmosphere (May 2018)
Quantitative Evaluation of the Haines Index’s Ability to Predict Fire Growth Events
Abstract
The Haines Index is intended to provide information on how midtropospheric conditions could lead to large or erratic wildfires. Only a few studies have evaluated its performance and those are primarily single fire studies. This study looks at 47 fires that burned in the United States from 2004 to 2017, with sizes from 9000 ha up to 218,000 ha based on daily fire management reports. Using the 0-h analysis of the North American Model (NAM) 12 km grid, it examines the performance of the start-day Haines Index, as Haines (1988) originally discussed. It then examines performance of daily Haines Index values as an indicator of daily fire growth, using contingency tables and four statistical measures: true positive ratio, miss ratio, Peirce skill score, and bias. In addition to the original Haines Index, the index’s individual stability and moisture components are examined. The use of a positive trend in the index is often cited by operational forecasters, so the study also looks at how positive trend, or positive trend leading to an index of 6, perform. The Continuous Haines Index, a related measure, is also examined. Results show a positive relationship between start day index and peak fire daily growth or number of large growth events, but not final size or duration. The daily evaluation showed that, for a range of specified growth thresholds defining a growth event, the Continuous Haines Index scores were more favorable than the original Haines Index scores, and the latter were more favorable than the use of index trends. The maximum Peirce skill score obtained for these data was 0.22, when a Continuous Haines Index of 8.7 or more was used to indicate a growth event, 1000 ha/day or more would occur.
Keywords