Nanoenergy Advances (Sep 2024)
Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures
Abstract
As triboelectric nanogenerator (TENG) technology continue to evolve, its application in harsh environments has increasingly captivated the interest of researchers. However, the current research on heat-resistant triboelectric materials remains predominantly focused on the development of tribo-negative materials, with scant attention given to their equally crucial tribo-positive counterparts. In this study, the tribo-positive polyimide (PI) material with enhanced tribo-positivity is developed by integrating amide groups with electron-donating effects into the molecular chain. Furthermore, the TENG devices based on this series of tribo-positive PI materials have demonstrated an open-circuit voltage (VOC) of 242 V, a short-circuit current (ISC) of 8.13 μA, and a transferred charge (QSC) of 117 nC. Notably, these devices also demonstrate the capability to efficiently generate electricity even under elevated temperature conditions. This work not only proposes a potential molecular design strategy for developing high-performance tribo-positive PI materials applicable in TENGs, but also markedly propels the advancement of robust energy-harvesting devices engineered for operation at elevated temperatures.
Keywords