Pathogens (Apr 2021)

Facile Synthesis and In Vitro Activity of <i>N</i>-Substituted 1,2-Benzisothiazol-3(2<i>H</i>)-ones against Dengue Virus NS2BNS3 Protease

  • Farwa Batool,
  • Muhammad Saeed,
  • Hafiza Nosheen Saleem,
  • Luisa Kirschner,
  • Jochen Bodem

DOI
https://doi.org/10.3390/pathogens10040464
Journal volume & issue
Vol. 10, no. 4
p. 464

Abstract

Read online

Several new N-substituted 1,2-benzisothiazol-3(2H)-ones (BITs) were synthesised through a facile synthetic route for testing their anti-dengue protease inhibition. Contrary to the conventional multistep synthesis, we achieved structurally diverse BITs with excellent yields using a two-step, one-pot reaction strategy. All the synthesised compounds were prescreened for drug-like properties using the online Swiss Absorption, Distribution, Metabolism and Elimination (SwissADME) model, indicating their favourable pharmaceutical properties. Thus, the synthesised BITs were tested for inhibitory activity against the recombinant dengue virus serotype-2 (DENV-2) NS2BNS3 protease. Dose–response experiments and computational docking analyses revealed that several BITs bind to the protease in the vicinity of the catalytic triad with IC50 values in the micromolar range. The DENV2 infection assay showed that two BITs, 2-(2-chlorophenyl)benzo[d]isothiazol-3(2H)-one and 2-(2,6-dichlorophenyl)benzo[d]isothiazol-3(2H)-one, could suppress DENV replication and virus infectivity. These results indicate the potential of BITs for developing new anti-dengue therapeutics.

Keywords