Nanomaterials (Sep 2021)

One-Pot Synthesis of Chlorophyll-Assisted Exfoliated MoS<sub>2</sub>/WS<sub>2</sub> Heterostructures via Liquid-Phase Exfoliation Method for Photocatalytic Hydrogen Production

  • I-Wen P. Chen,
  • Yan-Ming Lai,
  • Wei-Sheng Liao

DOI
https://doi.org/10.3390/nano11092436
Journal volume & issue
Vol. 11, no. 9
p. 2436

Abstract

Read online

Developing strategies for producing hydrogen economically and in greener ways is still an unaccomplished goal. Photoelectrochemical (PEC) water splitting using photoelectrodes under neutral electrolyte conditions provides possibly one of the greenest routes to produce hydrogen. Here, we demonstrate that chlorophyll extracts can be used as an efficient exfoliant to exfoliate bulk MoS2 and WS2 to form a thin layer of a MoS2/WS2 heterostructure. Thin films of solution-processed MoS2 and WS2 nanosheets display photocurrent densities of −1 and −5 mA/cm2, respectively, and hydrogen evolution under simulated solar irradiation. The exfoliated WS2 is significantly more efficient than the exfoliated MoS2; however, the MoS2/WS2 heterostructure results in a 2500% increase in photocurrent densities compared to the individual constituents and over 12 h of PEC durability under a neutral electrolyte. Surprisingly, in real seawater, the MoS2/WS2 heterostructure exhibits stable hydrogen production after solar illumination for 12 h. The synthesis method showed, for the first time, how the MoS2/WS2 heterostructure can be used to produce hydrogen effectively. Our findings highlight the prospects for this heterostructure, which could be coupled with various processes towards improving PEC efficiency and applications.

Keywords