BioMedical Engineering OnLine (Sep 2022)
Age-related differences in gait symmetry obtained from kinematic synergies and muscle synergies of lower limbs during childhood
Abstract
Abstract The age-related changes of gait symmetry in healthy children concerning individual joint and muscle activation data have previously been widely studied. Extending beyond individual joints or muscles, identifying age-related changes in the coordination of multiple joints or muscles (i.e., muscle synergies and kinematic synergies) could capture more closely the underlying mechanisms responsible for gait symmetry development. To evaluate the effect of age on the symmetry of the coordination of multiple joints or muscles during childhood, we measured gait symmetry by kinematic and EMG data in 39 healthy children from 2 years old to 14 years old, divided into three equal age groups: preschool children (G1; 2.0–5.9 years), children (G2; 6.0–9.9 years), pubertal children (G3; 10.0–13.9 years). Participants walked barefoot at a self-selected walking speed during three-dimensional gait analysis (3DGA). Kinematic synergies and muscle synergies were extracted with principal component analysis (PCA) and non-negative matrix factorization (NNMF), respectively. The synergies extracted from the left and right sides were compared with each other to obtain a symmetry value. Statistical analysis was performed to examine intergroup differences. The results showed that the effect of age was significant on the symmetry values extracted by kinematic synergies, while older children exhibited higher kinematic synergy symmetry values compared to the younger group. However, no significant age-related changes in symmetry values of muscle synergy were observed. It is suggested that kinematic synergy of lower joints can be asymmetric at the onset of independent walking and showed improving symmetry with increasing age, whereas the age-related effect on the symmetry of muscle synergies was not demonstrated. These data provide an age-related framework and normative dataset to distinguish age-related differences from pathology in children with neuromotor disorders.
Keywords