Energies (Aug 2023)
Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators
Abstract
Due to an extensive usage of heavy machinery, the construction sector is criticized as one of the major CO2 emitters. To address climate concerns, mitigating these greenhouse gas (GHG) emissions is important. This study aimed to strategize for “zero emission construction” by assessing the life cycle environmental impacts of diesel, electric, and hybrid construction machinery. By applying life cycle assessment (LCA) principles with adherence to ISO 14040/44 methodologies, this study scrutinizes the environmental repercussions of a standard excavator over 9200 effective operational hours, from raw material acquisition to end-of-life disposal. The results demonstrate a significant reduction in global warming potential (GWP), ozone depletion potential (ODP), and acidification potential (AP) in transitioning from diesel to hybrid and fully electric machines. A nominal increase due to this shift also occurred and impacted categories such as human carcinogenic toxicity (HT), freshwater eutrophication (EP), and marine ecotoxicity (ME); however, a more significant upsurge was noted in terrestrial ecotoxicity (TE) due to battery production. Thus, this study highlights the need for a careful management of environmental trade-offs in the shift toward electrified machinery and the importance of centering on the environmental profile of the battery. Future work should focus on enhancing the environmental profile of battery production and disposal, with policy decisions encouraging holistic sustainability based on green energies in construction projects.
Keywords