Molecular Therapy: Methods & Clinical Development (Mar 2020)

NFAT-Specific Inhibition by dNP2-VIVIT Ameliorates Autoimmune Encephalomyelitis by Regulation of Th1 and Th17

  • Hong-Gyun Lee,
  • Li-Kyung Kim,
  • Je-Min Choi

Journal volume & issue
Vol. 16
pp. 32 – 41

Abstract

Read online

Nuclear factor of activated T cells (NFATs) is an important transcription factor for T cell activation and proliferation. Recent studies have highlighted the role of NFATs in regulating the differentiation of effector CD4 T helper (Th) subsets including Th1 and Th17 cells. Because controlling the effector T cell function is important for the treatment of autoimmune diseases, regulation of NFAT functions in T cells would be an important strategy to control the pathogenesis of autoimmune diseases. Here, we demonstrated that an NFAT inhibitory peptide, VIVIT conjugated to dNP2 (dNP2-VIVIT), a blood-brain barrier-permeable peptide, ameliorated experimental autoimmune encephalomyelitis (EAE) by inhibiting Th1 and Th17 cells, but not regulatory T (Treg) cells. dNP2-VIVIT negatively regulated spinal cord-infiltrating interleukin-17A (IL-17A) and interferon (IFN)-γ-producing CD4+ T cells without affecting the number of Foxp3+ CD4+ Treg cells, whereas dNP2-VEET or 11R-VIVIT could not significantly inhibit EAE. In comparison with cyclosporin A (CsA), dNP2-VIVIT selectively inhibited Th1 and Th17 differentiation, whereas CsA inhibited the differentiation of all T cell subsets including that of Th2 and Treg cells. Collectively, this study demonstrated the role of dNP2-VIVIT as a novel agent for the treatment of autoimmune diseases such as multiple sclerosis by regulating the functions of Th1 and Th17 cells. Keywords: Multiple sclerosis (MS), VIVIT, T cell, Cell penetrating peptide (CPP), dNP2