Axioms (Dec 2021)

Banach Actions Preserving Unconditional Convergence

  • Taras Banakh,
  • Vladimir Kadets

DOI
https://doi.org/10.3390/axioms11010013
Journal volume & issue
Vol. 11, no. 1
p. 13

Abstract

Read online

Let A,X,Y be Banach spaces and A×X→Y, (a,x)↦ax be a continuous bilinear function, called a Banach action. We say that this action preserves unconditional convergence if for every bounded sequence (an)n∈ω in A and unconditionally convergent series ∑n∈ωxn in X, the series ∑n∈ωanxn is unconditionally convergent in Y. We prove that a Banach action A×X→Y preserves unconditional convergence if and only if for any linear functional y*∈Y* the operator Dy*:X→A*, Dy*(x)(a)=y*(ax) is absolutely summing. Combining this characterization with the famous Grothendieck theorem on the absolute summability of operators from ℓ1 to ℓ2, we prove that a Banach action A×X→Y preserves unconditional convergence if A is a Hilbert space possessing an orthonormal basis (en)n∈ω such that for every x∈X, the series ∑n∈ωenx is weakly absolutely convergent. Applying known results of Garling on the absolute summability of diagonal operators between sequence spaces, we prove that for (finite or infinite) numbers p,q,r∈[1,∞] with 1r≤1p+1q, the coordinatewise multiplication ℓp×ℓq→ℓr preserves unconditional convergence if and only if one of the following conditions holds: (i) p≤2 and q≤r, (ii) 2pq≤r, (iii) 2p=qr, (iv) r=∞, (v) 2≤qp≤r, (vi) q2p and 1p+1q≥1r+12.

Keywords