Applied Sciences (Aug 2023)
Personalized Advertising Design Based on Automatic Analysis of an Individual’s Appearance
Abstract
Market segmentation is a crucial marketing strategy that involves identifying and defining distinct groups of buyers to target a company’s marketing efforts effectively. To achieve this, the use of data to estimate consumer preferences and behavior is both appropriate and adequate. Visual elements, such as color and shape, in advertising can effectively communicate the product or service being promoted and influence consumer perceptions of its quality. Similarly, a person’s outward appearance plays a pivotal role in nonverbal communication, significantly impacting human social interactions and providing insights into individuals’ emotional states. In this study, we introduce an innovative deep learning model capable of predicting one of the styles in the seven universal styles model. By employing various advanced deep learning techniques, our models automatically extract features from full-body images, enabling the identification of style-defining traits in clothing subjects. Among the models proposed, the XCEPTION-based approach achieved an impressive top accuracy of 98.27%, highlighting its efficacy in accurately predicting styles. Furthermore, we developed a personalized ad generator that enjoyed a high acceptance rate of 80.56% among surveyed users, demonstrating the power of data-driven approaches in generating engaging and relevant content. Overall, the utilization of data to estimate consumer preferences and style traits is appropriate and effective in enhancing marketing strategies, as evidenced by the success of our deep learning models and personalized ad generator. By leveraging data-driven insights, businesses can create targeted and compelling marketing campaigns, thereby increasing their overall success in reaching and resonating with their desired audience.
Keywords